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A quantitative approach was constructed for detecting phase locking in a chaotic system with complex
attractor structure via stroboscopic method. We study the route to weak phase locking by analyzing the
stroboscopic points. The onset of weak phase locking detected by using this statistical approach and the critical
coupling strength calculated by Lyapunov exponent are matched well. Detailed structure of phase locking
intensity is described by the Arnold tongue diagram.
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Phase locking of chaotic oscillators by external driving
has been studied systematically �1�. In this topic, the re-
searches usually analyze the coherence dynamics based on
Arnold tongue diagram �2,3�. Recently the studies in experi-
ment and in theory show that a proper periodic perturbation
can force a chaotic oscillator to become phase coherent �4�.
Besides, Zhao studied the limits to chaotic phase synchroni-
zation between the chaotic systems with double-scroll struc-
ture of the attractor �5,6�. So far, detecting the phase locking
for phase-incoherent chaotic system is still an open question
�7–9�.

Traditionally, phase synchronization is defined as locking
of the phases �1,2, n�1−m�2=const. One of the most com-
mon methods to estimate the phase is Hilbert transform �10�.
But this traditional method is not suitable for many re-
searches. In the following reviews, hence, the researchers
provided some modulated method for the system with non-
coherent phase. In laser experiment, Gaussian filter method
was applied to study the phase synchronization between two
individual laser systems �11�. Rosenblum et al. �12� recom-
mended an approach by estimating the average frequency of
the observed signals. Chen defined the phase based on the
idea of the curvature of an arbitrary curve �13–15�. In the
meantime, the recurrence plot method was applied to study
the synchronization relation between chaotic systems be-
cause the recurrence plot method is not counted by the phase
angle �7�. For the real time study on an experimental data,
the stroboscopic method is applied �16�. In the case of peri-
odic driving, especially, phase locking in chaotic system is
defined in the stroboscopic manner �17�. Furthermore, some
limits of the analysis appear when we study a chaotic attrac-
tor with ill-defined phase, such as the double-scroll attractors
system �5,18�.

Theoretically, every time the periodic driver passes
through its local maximum, one can measure the chaotic at-
tractor and get a stroboscopic point �SP� �4,19�. If all these
measurements are confined to a region in the phase plane,
this means that the periodic driver locks the chaotic attractor.
When the driving amplitude is increased, the stroboscopic
points are concentrated correspondingly; this process is
called stroboscopic point concentration �SPC�. A general
technique based on stroboscopic technique is applied to de-
tect strong SPC in a chaotic system with noncoherent phase,
such as funneling attractor and spiking oscillator �9�. In

Pereira’s work an analysis method is claimed to quantify the
SPC.

The quantification of SPC with ill-defined phase is an
important work because the dynamics around the boundary
of weak phase locking domain is unclear. However, all
analysis methods mentioned above still cannot be well ap-
plied on a chaotic system with multiple attractor. There are
two restrictions to previous analyses for detecting chaotic
phase locking. First, the phase topology of driven system
should have steady torus structure or simple unstable peri-
odic orbit so that one can clearly cut a Poincaré section to
define the zero phase. Second, the strange attractor of chaotic
driven system should be single structure or can be trans-
formed to be single attractor, such as the Lorenz system �20�.
These restrictions stunned many researchers studying such a
problem because all analyses failed. Our work is to study an
analysis approach that can detect phase locking strength in a
chaotic system with dual attractors and ill-defined phase
structure.

This study discusses a phase locking of a chaotic system
with dual attractors that cannot be transformed into a simple
form, such as phase coherence or single attractor. Our analy-
sis approach for detecting SPC is determined by the stats of
SP distribution �SPD�. The SPD of a chaotic system is varied
with modulation of the driving force. When the driving force
is strong enough, the SPD will become localized. On the
contrary, when the driving force is too weak to lock the
system, the SPD will become broad. Besides, another prob-
lem needs to be considered for the selection of driving force.
A harmonic driver, such as sinusoid, will change the attractor
topology to be simple and phase coherent �4,9�. In order to
keep the attractor topology, the driving force is chosen by a
memory of periodic signal, which is recorded from the same
system. This prescribed nonlinear driving force is stable and
period one so that the influence of unstable-unstable crisis
can be reduced �19�.

A chaotic Chua circuit system with one attractor has been
studied in experiment and in simulation. Baptista et al. �4�
studied the Chua system with single well-defined phase at-
tractor, which can be locked by a harmonic sine perturbation
if the driving amplitude is high enough and the driving fre-
quency is detuned. In this paper, we study a chaotic Chua
circuit system with dual attractors. The equation of Chua
circuit system �21� is described by following formula.
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ẋ = 10�y − x�/R − 10g�x� ,

ẏ = �x − y�/R + z ,

ż = − 6y + f�t� , �1�

and

g�x� = − 0.5x − 0.3��x + 1� − �x − 1�� .

The R is a parameter, the “f�t�” is an external driving
signal, and x, y, and z are variables. Here, the “g�x�” is the
effective nonlinear characteristic in this system �Eq. �1��. The
parameter R is reserved to two values corresponding to two
different types of autonomous system �Figs. 1�a� and 1�b��:
the chaotic attractor and the period-one orbit. An output sig-
nal “z0” generated by system �1� in period-one state has been
memorized to be the driving force f�t�. By using a bifurca-
tion diagram as the function of R, one can tell that the Chua
system is chaotic at R=1.65 and the Chua system is periodic
at R=1.73. The chaotic system in Fig. 1�a� has two attractors
with ill-defined phase structure. Generating the periodic driv-
ing force in the simulation is like generating the signal by a
function generator in the experiment. The driving force can
be modulated by an amplitude modulation parameter or cou-
pling strength, that is, “f�t�=mAz0.” When the amplitude
modulation is larger than the critical value, the chaotic sys-
tem will be phase locked by the driving force. Nevertheless,
this critical value does not only depend on the definition of
phase locking but also the similarity between driving force
and the system.

The SP in this study is defined by sampling the chaotic
attractor every time the periodic driver passes through its
maximum value of z0�t�. In Fig. 2, the mA is varied to show
the route from uncoupling to weak SPC. When the amplitude
modulation is zero, the phase locking in the chaotic attractor
is impossible so that the SPs are spread randomly on this
attractor domain �Fig. 2�a��. As the amplitude modulation is
increased over the critical strength, the SP will start to con-
centrate gradually �Figs. 2�b�–2�d��. The amplitude modula-
tion parameters in Fig. 2 are �a� mA=0, �b� mA=0.005, �c�
mA=0.01, and �d� mA=0.02. In Fig. 2, the gray line is the
phase plot of the chaotic attractor by x-y and the black point
is a SP corresponding to different amplitude modulation.
Parts of SP in Fig. 2�b� are assembled slightly to smaller area
than the SP in Fig. 2�a�. As the amplitude modulation mA
=0.01 �Fig. 2�c��, most parts of SP are confined to several
groups. All SPs are highly concentrated as the amplitude

modulation is increased up to mA=0.02. Here, a small inten-
sity of amplitude modulation is effective to confine the SP.
The phase plot, however, shows that the phase structure in
this chaotic system is still ill defined and complex when the
weak phase locking appears. In other words, this periodic
driving force can only lock the phase of the chaotic attractor
without modifying the attractor’s characteristic too much.

The dynamics of weak SPC depend on the amplitude
modulation. This study uses a statistic approach to quantify
the SPC behavior. The location of SP on phase diagram is
defined by xi= �xi ,yi ,zi� for system �1� �the black points in
Fig. 2�. The relative distance between each pair of strobo-
scopic points is rij = �xi−x j� , i� j, where the � · � denotes
Euclidean norm. The stroboscopic point distribution is
counted by the normalized probability of SP as the function
of relative distance r. The probability of SP Pf�r� marks the
chaotic attractor every time the periodic driver passes
through its maximum value, where the suffix f means
“forced.” The surrogate analysis Pr�r� is counted by the stro-
boscopic points that are sampled in random time, where the
suffix r means “random.” The Pr�r� must distribute over all
the orbit domain of the chaotic attractor. When amplitude
modulation is zero, the distribution of Pf�r� and Pr�r� are the
same as shown in Fig. 3�a�. As amplitude modulation in-
creased, the Pf�r� becomes more localized than the Pr�r�.
The distribution in Figs. 3�c� and 3�d� manifests the work
showing that the driving force confines the stroboscopic
points to several groups. In Fig. 3, the distance counts by 32
bins and the parameters are �a� mA=0, �b� mA=0.005, �c�
mA=0.01, and �d� mA=0.02.

We quantify these distribution by the definition of the
Shannon entropy, H=−�NP�ri�log P�ri�, where N is total
number of bins and i is the state of relative distance. Thus the
entropy of randomly marked SPD can be counted by Hr=
−�NPr�ri�log Pr�ri�, and the entropy of periodically marked
SPD can be counted by Hf =−�NPf�ri�log Pf�ri�. Without
driving force, there is no phase locking between periodic
driving force and the chaotic system �in Figs. 2�a� and 3�a��;
thus the result is Hf �Hr. With strong enough amplitude
modulation, driving force can confine the forced SP to be

FIG. 1. The x-y phase diagram of �a� the chaotic attractor of
Chua system at R=1.65 and �b� the periodic orbit of Chua system at
R=1.73.

FIG. 2. The x-y phase diagram of chaotic attractor, which is
driven by different amplitude modulation, is drawn in gray line, and
their stroboscopic points in black. The amplitude modulation pa-
rameters are �a� mA=0, �b� mA=0.005, �c� mA=0.01, and �d� mA

=0.02.
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more localized than the random sampling SP �in Figs. 2�c�
and 3�c��; thus the result is Hf �Hr. By this relation, we
quantify the phase locking strength by the definition: Esp
=Hf /Hr, where the Esp is the entropy ratio of SPD.

The two largest Lyapunov exponent �LE� and the Esp are
calculated as the function of amplitude modulation. The
positive largest LE �gray line in Fig. 4�a�� denotes that the
force f�t� is too weak to synchronize system �1�. When the
amplitude modulation is less than the critical value, which is
marked by the black arrow in Fig. 4, the second large LE is
still zero �black line in Fig. 4�a�� and the value of Esp �Fig.
4�b�� is one. This critical value is the onset of weak phase
locking. The onset value in Figs. 4�a� and 4�b� is matched
well by statistic power. The route to weak phase locking can
be described well by the intensity of Esp. While the ampli-
tude modulation is larger than the critical value, the second
large LE starts to become negative and the Esp starts to grow
above one. After all, the entropy ratio of stroboscopic point
distribution Esp gives a good statistical approach to quantify
the weak phase locking in chaotic system with ill-defined
phase structure. This analysis approach is powerful enough

to detect the onset of weak phase locking, in case the
Lyapunov exponent of some dynamics systems cannot be
calculated �6,20�.

The dynamics of phase locking depend on the temporal
condition of driving force. Some experimental results in re-
view article show that a chaotic system has resonant re-
sponse to frequency modulation. In order to detune the tem-
poral parameter in periodic force, we define the driving force
as f�t�=mAz0�mFt�, where the mF is a frequency modulation
parameter. In Fig. 5, the Esp intensity is calculated as the
function of amplitude and frequency modulation. This Ar-
nold tongue diagram is unlike the traditional one that states
no information about intensity. For the constant amplitude
modulation, the Esp will respond as a resonant function to
mF. Besides, the local maximum Esp and the boundary of
weak phase locking region can be detected. The weak phase
locking boundary and structure are both not symmetrical to
frequency modulation. As the frequency modulation mA
�1.03, the minimum onset of weak phase locking is de-
tected in the tail of the tongue.

In conclusion, a chaotic system with complex phase at-
tractors causes a difficult problem in detecting phase locking.
We demonstrate a statistic approach to detect weak phase
locking by counting the stroboscopic point marked by peri-
odic timing in the chaotic Chua system with a nonlinear
periodic driving force, which was generated by the Chua
system itself. By using the definition of Shannon entropy, we
calculate the distribution of SP in different modulations of
the driving force. In the statistical result, the largest
Lyapunov exponent is always positive; thus no synchroniza-
tion can be observed. The originally null second largest
Lyapunov exponent becomes negative because the amplitude
modulation is larger than the onset value of weak phase lock-
ing. This analysis result by Lyapunov exponent matches well
the analysis result based on the entropy ratio of stroboscopic
point distribution. To apply this statistic approach on analyz-
ing the weak phase locking intensity as the function of am-
plitude and frequency modulation, the boundary of weak
phase locking is described. This statistic approach is power-
ful enough to apply on the other chaotic system with many
attractors.

The authors would like to thank the National Science
Council of the Republic of China, Taiwan, for financially
supporting this research under Contract No. NSC 96-2112-
M-017-001-MY3.

FIG. 3. The probability of stroboscopic point Pf�r�, which is
sampled by periodic time, and Pr�r�, which is sampled by random
time, as the function of relative distance is counted in the amplitude
modulation: �a� mA=0, �b� mA=0.005, �c� mA=0.01, and �d� mA

=0.02.

FIG. 4. �a� The largest two LE of the chaotic Chua system as the
function of amplitude modulation mA are drawn. The gray line
shows the largest LE and the black line shows the second LE. �b�
Esp as the function of amplitude modulation mA. The black arrow
marks the onset of weak phase locking.

FIG. 5. �Color online� The Esp intensity diagram is described as
the functions of amplitude modulation mA and frequency modula-
tion mF. The hemicircle area in white is the no solution domain.
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